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On the Bethe Ansatz for Random Directed Polymers
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We show that the inclusion of the (gapless) center-of-mass motion together with
a functional integral representation of the Bethe wave function allows one to
predict exactly the critical exponents for random directed polymers in (1+1)
dimensions. The corresponding amplitudes are computed; they compare
satisfactorily with existing numerical data. Within a replica-symmetric theory,
we find that the Green function of the polymer has the form recently proposed
by Parisi.

KEY WORDS: Directed polymers; replica symmetry breaking; interface in
random environments.

Directed polymers in random media have recently drawn considerable
attention,™™” both because the equations describing their properties bear
much resemblance with those appearing in a variety of other problems, ">
and also because they may serve as a testing field for ideas and methods
devised for the theory of spin-glasses.

One consequence of the presence of disorder is that the typical confor-
mation of the polymer is “stretched” in the transverse direction, so that,
far away, attractive impurities may be reached. “Anomalous” (e.g., non-
Brownian) transverse fluctuations are thus expected, at least in sufficiently
low dimensions.

Many results are now available, among which one may cite the exact
solution on the Bethe lattice," 1/d expansions,”® and numerical simula-
tions.®>”) Some analytical results have also been obtained in two dimen-
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sions. In particular, the transverse extension is believed to scale as X ~ L%3,
where L is the total length of the walk.

The replica method, followed by Kardar,® leads to the study of an
assembly of # one-dimensional quantum particles interacting via a poten-
tial given by the correlation function of the disorder. If this correlation
function is a Dirac function, the ground state may be characterized exactly.
This yields, for large L, the integer moments of the partition function®:

(Z"y =exp{—fL(n—n>)} (1)

Then, following Zhang,®® one may argue that a probability distribution
P(F) for the free energy F= —Ln Z which has exponential moments
{e™> » given by (1) can be explicitly constructed as

P(F)=exp{~a |F—F,|** L™"?} (2)

with Fy= fL. From (2) one concludes that the typical fluctuations of F
are of order AF~ L® with w=1/3. Then, using the scaling relation”
AF~ X?*/L, one finally obtains X ~ L’ with v=2/3.

This line of reasoning is not entirely satisfying, for the following
reasons:

(a) Since the moments {Z") grow as exp n>> n", the probability
distribution of Z (and hence the moments of {In Z}) is not uniquely deter-
mined. In other words, (2) may only give information on large deviations
(i.e., the tails of the distributions) and not on the typical fluctuations.

(b) The scaling relation'”> w=2v—1 must be used to obtain the
behavior of X, which one would like to infer directly from the replica
calculation. This would also allow one, in principle, to obtain the prefactor
C defined as

C= lim (X?)/L*

L— o

(c) Finally, a “ground-state dominance” hypothesis has been made'®
to obtain (1). In other words, (1) is valid only if there is a gap in the
Hamiltonian spectrum describing the # fictitious particles alluded to above.
This hypothesis is, however, surely not justified, since the kinetic energy of
the center of mass can be made arbitrarily small. The aim of this note is
to show that if one includes the whole band of center-of-mass plane waves,
the result X ~ L¥? naturally follows. We also discuss how one may obtain
the prefactor C, and also the nonextensive corrections to the average free
energy (of order L'?).
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We thus start from the continuum path integral formulation of Z:
Z={ ox(t)exp — [ dt{x*/4D — BV(x(1), 1)} (3a)

with (V(x, t) V(x', t'))> = V?6(x —x') (¢t — t'). The initial point is fixed at
x(0) =0, whereas the final point is free.
Hence

(Z"y ="’ [ g (t)exp — [ di {Z 2/A4D—pV? 3 6(xa(r>—xﬁ(z>)}
I3 f>a
(3b)

where a is a short-distance cutoff needed to define the model properly. Now
defining the Hamiltonian

H,=—D Y OPfoxI— V> Y 8(x,—xp) 4)

f>a

one may express (Z") as
(Z"y = [ d,edx, oy x| exp— LA 100 (5)

Only the low-energy states of #, will matter for L large. The ground state
of #, is easily shown to be®

|%>=/V“1exp<—z » |xa—xﬁ|> 6)

B>

with 44D = 8?2 The ground-state energy is then Eq= —i2Dn(n®— 1)/3.
The low-lying excitations are simply constructed by allowing the center of
mass to have a nonzero momentum:

IY’k>=JV‘exp(ikaa)exp<~i Y |xa—xﬂ]) (N

B>a

with the associated energy E, = E,+ nDk’. For large L, we shall only keep
the subspace spanned by the |¥,) and write

exp(—L,) =exp(— LE,) f dic (nLD/m)"" exp(—nLDK?) |¥,: )< ¥4  (8)

Note that in the case 2= 0, the center-of-mass motion is indeed necessary
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to recover the “free” diffusion propagator. Now, following Parisi,®’ we will
use a Gaussian representation for exp(—4 3 5., |x, — x4l ):

exp{—4 3 %= x5} = Dg exp[—(l/u) [ dx(@p/oxy? + 3, <p<x1)] 9)

B>a

with the normalization
f G exp [— (1/44) j dx(@rp/ax)z} =1

This representation allows us to show that ¥y(x)=1 and 4" =1 for n=0.
From (5) and (9) one then obtains

(Z"y =exp(—LE,) [ 4 = di(nLD/m)""* exp(—nLDK?)
x f Do exp [ —(1/42) f dx(aq)/ﬁx)z]

xfndxx exp [ik Y ox,+) (p(xm)J (10a)

For integer n, ¢ and x play symmetric roles: they are both dynamic fields.
In the limit » — 0, however, ¢ becomes a “quenched” field, since one has
to compute expression of the form

j D exp [ —(1/42) j dx((?(p/éx)z]

X {f dx O ,(x) exp[ikx + (p(x)]/f dx exp[ikx + (p(x)]} (10b)

Hence, in the limit » =0, we maintain that {(Z")> should be computed as
the quenched average over the ¢ field of

exp(— LE) [ 7 dx, exp [—(1/4nDL) (Z xa>2 +y (p(xa)] (11)

x

(the integral over k has been performed): using the ¢ fields naturally
defines a procedure (taking ¢ as a quenched field) which is difficult to
transpose directly to the Bethe wave function (6).> One now rescales x and

@ as
x=L?y and  @(x)=L"Y(y) (12)

3 The direct computation of {X*(L)> using (8) has been performed by Mézard. It yields
(XHL)>~Lin—1/n*

which shows that the limit » — 0 cannot be reached directly with expression (8).
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This rescaling leaves invariant the iy measure. Hence,

jn dx, exp —[(1/4nDL) (Z xa)2 +§ (p(xx)]
=12 [ ndy, exp {—LW [(2 ym>2/4nD +§ lp(ya)]} (13)

=4

For fixed n and large L,* we search the saddle point of the expression
in braces & for a fixed ¥. Writing p(y)=n"'¥,é(y—y, and
Y=n"'Y, y,, the functional minimization of .=/ with respect to p(y) leads
to

yY=2Dy(y) (14)

which cannot be satisfied, for a typical , for all y. Only a finite set of
points {y;} are solutions of (14), and ./ then reads

of = —n/4DY?

In order to minimize o/, we assume that all y, must be equal (“replica-
symmetric solution”) to a value ¢ which minimizes the one-body energy:

E(Y)=CE/AD +y(¢) (15)

Physically, this represents the energy of a point particle attached to the
origin with a spring, and subject to a potential y the slope of which is a
Gaussian random variable of variance 24. This model was studied in
refs. 10 and 11. In the limit nL'”? large and assuming “replica symmetry”
[which amounts to discarding situations where quasidegenerate minima of
(15) exist], one obtains {(Z") as

Jowexp | —(1ai) | dsteufex? | expl—nt B0 (16

which has the following interpretation: for a given L, one may associate fo
each sample a configuration {¢(x)} chosen with the weight (9). Then the
“toy-model” partition function z={d¢exp[— L' EW(¢))] is computed
for each sample. If z is correctly estimated as exp[ —L'Y*E,_, ()], then
(16) simply expresses that (Z") is the average over ¢ of z”, and hence that

* As usual in disordered systems (see, e.g., ref. 13), L must go to infinity before the limit n =0
is taken.
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the toy model (15) contains the full physics of the original problem.® Thus
@, which initially appeared through a mathematical “trick” [Eq. (9)] has
(in this approximation scheme) a direct physical interpretation. As
emphasized in ref. 9, this is best seen on the Burgers equation approach to
the problem: to each sample of a given length L, one may indeed associate
an effective potential ¢ acting only on the “head” of the polymer. The
“miracle” comes from the fact that whereas the true potentials V' have
short-range correlations, the effective potential ¢ has long-range correla-
tions {[¢(X)—o(Y)]*) ~|X—Y].

A lot of information can be deduced from this simplified model. For
example, the moments of the transverse extension and the energy may be
obtained numerically (similar calculations were performed in ref. 11) {(.-->
now means average over /:

&> =082(Dp*V*)'7
<62>1/2 — 102(D,82V2)1/3
(V4 =235(DB2 V)"

(Ey= ~0.6(B*V*/D)"*

(17)

To obtain these numbers, we generated the Gaussian process {y. We then
searched for the value of ¢ which minimizes the energy (15). We then
averaged over 20,000 configurations of ¥ to obtain (17). The results yield,
for the original problem [through the scalings (12)],

F= —(InZ)= +LA*D/3+ L(E) (18)

Note that the L' term appears as a correction in the average free energy.
One also obtains C=1.02(D*V?)*?. This compares very well with
numerical results® of Kardar'” (V2 =5/6 and D ~0.33 or ~0.03), which

5 That this toy model retains much of the original problem has also been suggested by
Parisi. However, instead of introducing the center-of-mass motion as in Eq.(8), he
constructs heuristically the Green function of the problem by multiplying the Bethe wave
function (6) by the product of the free Green functions of the individual particies:

Gparisi( X1 X)) = A "L exp <_Z Xi/4DL> exXp < -4 Z |x, —xﬂ[>

o« B>

which also gives (20), (21) in the limit n=0.

® Disorder must be small if one wants to discretize faithfully Eq. (3), ie., in such a way that
the microscopic diffusion constant D and disorder variance (V)? really determine (3). For
strong disorder [(BV)?» 4D], the very first steps of the walk are already sensitive to the
presence of impurities: this “renormalizes” D and (V)% Then (3) must be understood in a
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give C~0.98. One may also obtain the free energy fluctuations: the term
of order n? in the expansion of (Z") is given by

(AF?) = LP({E*(9)) — <E(9)>?) (19)

Hence (4F?*>'?~042L'*(p*V*/D)". It would be interesting to compare
the prefactors of higher moments of X. One may also obtain the probability
distribution to find the “head” of the polymer at site X after “time” L: using
the properties of ¢(X), one finds

{In P(X,L)>= —X?/4DL (20)
and
{(n P(X, L))*>—In P(X, L)>*>=2J | X| (21)

which coincide with the results recently proposed by Parisi (see footnote 5).

The behavior of (P(X,L)) for large X can also be computed:
one finds"" that In{P(X, L))~ (X/L?*)® for X» L*? The asymptotic
shape of P(In Z) in this toy model can be characterized"?: P(In Z)~
exp(—(In Z)*?), in agreement with Eq. (2).®

These predictions have been checked numerically by MézardV: while
(20) is well reproduced, (21) seems to be only valid for values of y = X/L*?
not too large (y<2): this again suggests that the existence of
quasidegenerate solution minima of (15) might lead to a breaking of the
“replica symmetry” in (13), i.e.,, that one should put some fraction fi of the
¥, in one well and the other (1 — f)#n in the other quasidegenerate wells
(see note added in proof). In this case, the simple picture based on the toy
model (15) cannot be correct [see Eq.(16) and the discussion that
follows]. Replica symmetry breaking, related to the existence of several
pure states with free energy difference O(L'?), has been suggested inde-
pendently by Parisi® and by Mézard.” It is argued in ref 9 that low-
energy states of #, (for n—>0) can be constructed by forming well-
separated packets {for example, two clusters containing each n/2 particles).
Inside each cluster, one chooses the wavefunction (6): the energy of
the obtained state is then argued to be very close to the true ground
state when n— 0. It is reasonable to think that the existence of several

coarse-grained sense. The comparison with the numerical data of ref. 1 is meaningful since
a change of a factor =10 in D does not change the obtained value of the prefactor C,
showing that one is indeed in a weak-disorder regime. On the contrary, no quantitative
comparison can be made with the data of ref 7, since in that case, disorder is strong
[D=1/2,(BV)*=49].



884 Bouchaud and Oriand

quasidegenerate ground states of (15) could be the correct coding of this
effect. This replica symmetry breaking is expected to affect the numerical
values given in Eq. (17), although the lowest moments of ¢ should not be
dramatically shifted.
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NOTE ADDED IN PROOF

In a recent paper, Fisher and Huse (Preprint July 1990) have
argued that the correlation function of the effective potential ¢(X) should
saturate for distances ~L*? since two walks starting from two points
L7 apart cannot “interfere” with each other. A (phenomenological) way
to obtain this saturation is to add a “mass term” mZ2@? to the ill-defined
(at k=0) “action” (1/44) [ dx (d¢/dx)*. This leads to <{Y(X)y(Y)) =
(1/my) [1—exp(—mgy|x—y|)], which compares satisfactorily with
Mezard’s data.!”
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