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On the Bethe Ansatz for Random Directed Polymers 
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We show that the inclusion of the (gaptess) center-of-mass motion together with 
a functional integral representation of the Bethe wave function allows one to 
predict exactly the critical exponents for random directed polymers in (1 + 1) 
dimensions. The corresponding amplitudes are computed; they compare 
satisfactorily with existing numerical data. Within a replica-symmetric theory, 
we find that the Green function of the polymer has the form recently proposed 
by Parisi. 

KEY WORDS: Directed polymers; replica symmetry breaking; interface in 
random environments. 

Di rec ted  po lymers  in r a n d o m  media  have recent ly d rawn  cons iderable  
a t tent ion ,  (1-7) bo th  because  the equat ions  descr ibing their  p roper t ies  bear  
much  resemblance  with those  appea r ing  in a var ie ty  of  o ther  problems,  (1"3) 
and  also because  they m a y  serve as a test ing field for ideas and  me thods  
devised for the theory  of spin-glasses.  

One  consequence  of the presence of  d i sorder  is tha t  the typical  confor-  
m a t i o n  of the po lymer  is "s t re tched"  in the t ransverse  direct ion,  so that ,  
far away,  a t t rac t ive  impur i t ies  m a y  be reached.  " A n o m a l o u s "  (e.g., non-  
Brownian)  t ransverse  f luctuat ions  are  thus expected,  a t  least  in sufficiently 
low dimensions .  

M a n y  results  are  now avai lable ,  a m o n g  which one m a y  cite the exact  
so lu t ion  on the Bethe lattice,  ~4) l i d  expansions ,  ~5) and  numer ica l  s imula-  
tions. (6'7) Some analy t ica l  results have also been ob ta ined  in two d imen-  
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sions. In particular, the transverse extension is believed to scale as X ~  L 2/3, 
where L is the total length of the walk. 

The replica method, followed by Kardar, (23 leads to the study of an 
assembly of n one-dimensional quantum particles interacting via a poten- 
tial given by the correlation function of the disorder. If this correlation 
function is a Dirac function, the ground state may be characterized exactly. 
This yields, for large L, the integer moments of the partition function(Z): 

( Z  n) = exp{ - f L ( n  - n3)} (1) 

Then, following Zhang, (8) one may argue that a probability distribution 
P(F) for the free energy F = - L n  Z which has exponential moments 
(enr)p given by (1) can be explicitly constructed as 

P(F) = exp { - a~ I F -  No[ 3/2 L - 1/2 } (2) 

with Fo=fL .  From (2) one concludes that the typical fluctuations of F 
are of order A F , ~ U  ~ with ~o = 1/3. Then, using the scaling relation (1~ 
A F g X 2 / L ,  one finally obtains X ~ L  ~ with v=  2/3. 

This line of reasoning is not entirely satisfying, for the following 
reasons: 

(a) Since the moments ( Z  n) grow as exp n3~>n n, the probability 
distribution of Z (and hence the moments of (In Z ) )  is not uniquely deter- 
mined. In other words, (2) may only give information on large deviations 
(i.e., the tails of the distributions) and not on the typical fluctuations. 

(b) The scaling relation (1) c o = 2 v - 1  must be used to obtain the 
behavior of X, which one would like to infer directly from the replica 
calculation. This would also allow one, in principle, to obtain the prefactor 
C defined as 

C =  lim (X  2)/L 4/3 
L~oo 

(c) Finally, a "ground-state dominance" hypothesis has been made (z) 
to obtain (1). In other words, (1) is valid only if there is a gap in the 
Hamiltonian spectrum describing the n fictitious particles alluded to above. 
This hypothesis is, however, surely not justified, since the kinetic energy of 
the center of mass can be made arbitrarily small. The aim of this note is 
to show that if one includes the whole band of center-of-mass plane waves, 
the result X..~ L 2/3 naturally follows. We also discuss how one may obtain 
the prefactor C, and also the nonextensive corrections to the average free 
energy (of order L1/3). 
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We thus start from the continuum path integral formulation of Z: 

= f Nx(t) exp - f  dt{2Z/4D - ~V(x(t), t)} (3a) Z 

with (V(x, t) V(x', t ' ) )= V 2 6 ( x - x  ') 6 ( t - t ' ) .  The initial point is fixed at 
x(0) = 0, whereas the final point is free. 

Hence 

~ ~__ ~--~a; ~ e x p - f  ~ {~ ~ 4 ~ - ~  ~ ~,~)_~,~,,} 
(3b) 

where a is a short-distance cutoff needed to define the model properly. Now 
defining the Hamiltonian 

~ = - D  Z ~2/Ox~-fl 2V2 Z 6 ( x , - x z )  (4) 

one may express ( Z " )  as 

( Z")  = f dx, . . .dx ,  (xl  ... x,I e x p - L ~  10---0) (5) 

Only the low-energy states of ~ will matter for L large. The ground state 
of ~ is easily shown to be (z) 

, T o ~ = ~ V ' - l e x p ( - 2  ~ , x~-x~, )  (6) 
fl>a 

with 42D=flZV 2. The ground-state energy is then Eo= -22Dn(n 2 -  1)/3. 
The low-lying excitations are simply constructed by allowing the center of 
mass to have a nonzero momentum: 

~ ~  ~ e x ~ ( ; ~ ) e x p ( ~ 5 ~  ) ~7, 

with the associated energy E k = Eo + nDk 2. For large L, we shall only keep 
the subspace spanned by the I Tk) and write 

exp(-LEo)  f dk (nLD/r~) ~/2 exp( -nLDk 2) IgJk)( ~ t  (8) exp( ~ Z ~  ~ 

Note that in the case V2= 0, the center-of-mass motion is indeed necessary 
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to recover the "free" diffusion propagator.  Now, following Parisi,(9) we will 
use a Gaussian representation for e x p ( -  2 ~ > ~ [ x ~ -  x/~t ): 

e x p { - 2  ~ ,x~,-x~l }= f ~p exp [ - ( 1 / 4 2 ,  f dx(~q~/?x,2+ ~ ~0(x~)] (9) 

with the normalization 

;~cpexp[-(1/42)fdx(c3cp/c3x)2]=l 

This representation allows us to show that 7t0(x) - 1 and Y = 1 for n = 0. 
From (5) and (9) one then obtains 

( Z " )  = e x p ( -  LEo) f Y-2 dk(nLD/rc)1/2 exp( ~ ~ L D k 2  ~ 

xf~dx~exp[ik~x~+~o(x~) 1 (10a) 

For integer n, ~0 and x play symmetric roles: they are both dynamic fields. 
In the limit n ~ 0, however, q) becomes a "quenched" field, since one has 
to compute expression of the form 

f~q~expI-(1/42) fdx(c3q~/c3x)2 ] 

x{fdxO~o(x)exp[ikx+q~(x)]/fdxexp[ikx+cp(x)]} (10b) 

Hence, in the limit n =0 ,  we maintain that ( Z " )  should be computed as 
the quenched average over the ~o field of 

E ? ] e x p ( - L E o )  frc dx~ exp -(1/4nDL) x~ + ~ q~(x~) (1t) 

(the integral over k has been performed): using the q~ fields naturally 
defines a procedure (taking q) as a quenched field) which is difficult to 
transpose directly to the Bethe wave function (6). 3 One now rescales x and 
q~ as X = L 2 / 3 y  and cp(x) = L~/30(y ) (12) 

3 The direct computation of (X2(L)) using (8) has been performed by M6zard. ~7~ It yields 

(xz(L) 5 ~ r/n-- 1/n 4 
which shows that the limit n ~ 0 cannot be reached directly with expression (8). 
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This rescaling leaves invariant the ~ measure. Hence, 

f ~zdx~exp-I(1/4nDL)(~x~)2+~o(x~)] 

=Len/3;rcdy~,exp{-L1/3I(~y~,)2/4nD+~O(y~,)l } (13) 

J 

For fixed n and large L ,  4 w e  search the saddle point of the expression 
in braces -~ for a fixed tp. Writing p(y)=n-~Z~6(y-y~) and 
Y= n-1 Z~ Y~, the functional minimization of ~r with respect to p(y) leads 
to 

yY=2DO(y) (14) 

which cannot be satisfied, for a typical 0, for all y. Only a finite set of 
points {Yi} are solutions of (14), and d then reads 

sg = -n/4D y2 

In order to minimize sg, we assume that all y~ must be equal ("replica- 
symmetric solution") to a value ~ which minimizes the one-body energy: 

E(O) = ~2/4D + 0(~) (15) 

Physically, this represents the energy of a point particle attached to the 
origin with a spring, and subject to a potential ff the slope of which is a 
Gaussian random variable of variance 22. This model was studied in 
refs. 10 and 11. In the limit nL 1/3 large and assuming "replica symmetry" 
[which amounts to discarding situations where quasidegenerate minima of 
(15) exist], one obtains ( Z  ~) as 

f ~O exp [ - ( 1 / 4 2 ) f  dx(Otp/ax) 2] exp[-nL1/3Emin(t~) ] (16) 

which has the following interpretation: for a given L, one may associate to 
each sample a configuration {q~(x)} chosen with the weight (9). Then the 
"toy-model" partition function z=Sd~exp[--L1/3E(O(~))] is computed 
for each sample. If z is correctly estimated as exp[--L~/3Emin(~)], then 
(16) simply expresses that ( Z ' )  is the average over ~0 of z ", and hence that 

4 AS usual in disordered systems (see, e.g., ref. 13), L must go to infinity before the limit n = 0 
is taken. 
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the toy model (15) contains the full physics of the original problem, s Thus 
~0, which initially appeared through a mathematical "trick" [Eq. (9)] has 
(in this approximation scheme) a direct physical interpretation. As 
emphasized in ref. 9, this is best seen on the Burgers equation approach to 
the problem: to each sample of a given length L, one may indeed associate 
an effective potential ~0 acting only on the "head" of the polymer. The 
"miracle" comes from the fact that whereas the true potentials V have 
short-range correlations, the effective potential ~o has long-range correla- 
tions ( [ ~p(X) - q)(Y) ] 2 ) ~ I X -  Y[. 

A lot of information can be deduced from this simplified model. For 
example, the moments of the transverse extension and the energy may be 
obtained numerically (similar calculations were performed in ref. 11) ( . . . )  
now means average over ~: 

( 141 ) = o. 82(Dfl 2 V 2)1/3 

( r > 1/2 = 1.02(Df12 V2)1/3 
(17) 

( 44 ) 1/4 = 2.35(Dfi2 V 2) 1/3 

( E ) = --0.76(~4 V4/D ) 1/3 

To obtain these numbers, we generated the Gaussian process ~b. We then 
searched for the value of ~ which minimizes the energy (15). We then 
averaged over 20,000 configurations of ~O to obtain (17). The results yield, 
for the original problem [through the scalings (12)], 

F =  - (In Z )  = +L22D/3 + L1/3(E) (18) 

Note that the L 1/3 term appears as a correction in the average free energy. 
One also obtains C=1.02(D[12V2) I/3. This compares very well with 
numerical results 6 of Kardar (1) (/~2V2 = 5/6 and D ~0.33 or ~0.03), which 

s That this toy model retains much of the original problem has also been suggested by 
Parisi. ~ However, instead of introducing the center-of-mass motion as in Eq. (8), he 
constructs heuristically the Green function of the problem by multiplying the Bethe wave 
function (6) by the product of the free Green functions of the individual particles: 

which also gives (20), (21) in the limit n =0. 
6 Disorder must be small if one wants to discretize faithfully Eq. (3), i.e., in such a way that 

the microscopic diffusion constant D and disorder variance (/3V) 2 really determine (3). For 
strong disorder [(/~V)2~> 4D], the very first steps of the walk are already sensitive to the 
presence of impurities: this "renormalizes" D and (/~V) 2. Then (3) must be understood in a 
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give C~0.98.  One may also obtain the free energy fluctuations: the term 
of order n 2 in the expansion of ( Z  n) is given by 

<ziF 2 ) = L2/3(<E2((p) ) - < E(qg) )2) (19) 

Hence (AF  2)m,~  0.42L1/3(f14V4/D)1/3. It would be interesting to compare 
the prefactors of higher moments of X. One may also obtain the probability 
distribution to find the "head" of the polymer at site X after "time" L: using 
the properties of ~o(X), one finds 

(In P(X, L)> = -X2 /4DL (20) 

and 

(( in  P(X, L)) 2 ) - (In P(X, L) ) 2 =22  Igl (21) 

which coincide with the results recently proposed by Parisi (see footnote 5). 
The behavior of ( P ( X , L ) )  for large X can also be computed: 

one finds (m that l n ( P ( X , L ) ) ~ ( X / L 2 / 3 )  3 for X > L  2/3. The asymptotic 
shape of P(ln Z) in this toy model can be characterized(12): P(ln Z) 
e x p ( - ( I n  Z)3/2), in agreement with Eq. (2). (8) 

These predictions have been checked numerically by M6zard(l~: while 
(20) is well reproduced, (21) seems to be only valid for values of y = X/L 2/3 
not too large (y~<2): this again suggests that the existence of 
quasidegenerate solution minima of (15) might lead to a breaking of the 
"replica symmetry" in (13), i.e., that one should put some fraction fn of the 
y~ in one well and the other ( 1 - f )  n in the other quasidegenerate wells 
(see note added in proof). In this case, the simple picture based on the toy 
model (15) cannot be correct [-see Eq.(16) and the discussion that 
follows-]. Replica symmetry breaking, related to the existence of several 
pure states with free energy difference 0(LI/3), has been suggested inde- 
pendently by Parisi (9) and by M6zard. (7~ It is argued in ref. 9 that low- 
energy states of ~ (for n--+0) can be constructed by forming well- 
separated packets (for example, two clusters containing each n/2 particles). 
Inside each cluster, one chooses the wavefunction (6): the energy of 
the obtained state is then argued to be very close to the true ground 
state when n-~0.  It is reasonable to think that the existence of several 

coarse-grained sense. The comparison with the numerical data of ref. 1 is meaningful since 
a change of a factor ~10 in D does not change the obtained value of the prefactor C, 
showing that one is indeed in a weak-disorder regime. On the contrary, no quantitative 
comparison can be made with the data of ref. 7, since in that case, disorder is strong 
[D = 1/2, (flV) 2 = 49]. 
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quasidegenerate ground states of (15) could be the correct coding of this 
effect. This replica symmetry breaking is expected to affect the numerical 
values given in Eq. (17), although the lowest moments of ~ should not be 
dramatically shifted. 
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NOTE A D D E D  IN PROOF 

In a recent paper, Fisher and Huse (Preprint July 1990) have 
argued that the correlation function of the effective potential q)(X) should 
saturate for distances ,-~L 2/3 since two walks starting from two points 
L 2/3 apart cannot "interfere" with each other. A (phenomenological) way 
to obtain this saturation is to add a "mass term" m2~o 2 to the ill-defined 
(at k = 0 )  "action" (1/42) S dx (~?q0/c3x) 2. This leads to (0(X) ~(Y))  = 
(l/m0) [ 1 - e x p ( - m o l x - y l )  ], which compares satisfactorily with 
Mezard's data/v) 
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